TGS 813 - for the detection of Combustible Gases

Features:
* General purpose sensor with sensitivity to a wide range of combustible gases
* High sensitivity to methane, propane, and butane
* Long life and low cost
* Uses simple electrical circuit

Applications:
* Domestic gas leak detectors and alarms
* Portable gas detectors

The sensing element of Figaro gas sensors is a tin dioxide (SnO2) semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

The TGS 813 has high sensitivity to methane, propane, and butane, making it ideal for natural gas and LPG monitoring. The sensor can detect a wide range of gases, making it an excellent, low cost sensor for a wide variety of applications. Also available with a ceramic base which is highly resistant to severe environments up to 200°C (model# TGS 816).

The figure below represents typical sensitivity characteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (Rs/Ro) which is defined as follows:

\[\text{Rs} = \text{Sensor resistance of displayed gases at various concentrations} \]
\[\text{Ro} = \text{Sensor resistance in 1000ppm methane} \]

Temperature/Humidity Dependency:

The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as sensor resistance ratio (Rs/Ro), defined as follows:

\[\text{Rs} = \text{Sensor resistance at 1000ppm of methane at various temperatures/humidities} \]
\[\text{Ro} = \text{Sensor resistance at 1000ppm of methane at 20°C and 65% R.H.} \]
Structure and Dimensions:

Pin Connection and Basic Measuring Circuit:
The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (above). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (\(V_{RL}\)) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.

Standard Circuit Conditions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Rated Values</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Voltage</td>
<td>(V_H)</td>
<td>5.0±0.2V</td>
<td>AC or DC</td>
</tr>
<tr>
<td>Circuit Voltage</td>
<td>(V_C)</td>
<td>Max. 24V</td>
<td>AC or DC *PS 15mW</td>
</tr>
<tr>
<td>Load Resistance</td>
<td>(R_L)</td>
<td>Variable</td>
<td>*PS 15mW</td>
</tr>
</tbody>
</table>

Electrical Characteristics:

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Resistance</td>
<td>Rs</td>
<td>Methane at 1000ppm/Air</td>
<td>5k ~ 15k</td>
</tr>
<tr>
<td>Change Ratio of Sensor Resistance</td>
<td>(Rs/Ro)</td>
<td>Rs (Methane at 3000ppm/Air) / Rs (Methane at 1000ppm/Air)</td>
<td>0.60 ± 0.05</td>
</tr>
<tr>
<td>Heater Resistance</td>
<td>(R_H)</td>
<td>Room temperature</td>
<td>30.0 ± 3.0</td>
</tr>
<tr>
<td>Heater Power Consumption</td>
<td>(P_H)</td>
<td>(V_H)=5.0V</td>
<td>835 ± 90mW</td>
</tr>
</tbody>
</table>

Standard Test Conditions:
TGS813 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below:

- Test Gas Conditions: 20±2°C, 65±5%R.H.
- Circuit Conditions: \(V_C = 10.0±0.1V\) (AC or DC), \(V_H = 5.0±0.05V\) (AC or DC), \(R_L = 4.0kΩ±1\%\)
- Preheating period before testing: More than 7 days

Sensor Resistance (Rs) is calculated by the following formula:

\[
Rs = \left(\frac{V_C}{V_{RL}} - 1 \right) \times R_L
\]

Power dissipation across sensor electrodes (Ps) is calculated by the following formula:

\[
Ps = \frac{V_C \times Rs}{(Rs + R_L)^2}
\]

For information on warranty, please refer to Standard Terms and Conditions of Sale of Figaro USA Inc.