80 mA CMOS Low Iq, Low-Dropout Voltage Regulator The NCP502 series of fixed output linear regulators are designed for handheld communication equipment and portable battery powered applications which require low quiescent. The NCP502 series features an ultra–low quiescent current of 40 μA . Each device contains a voltage reference unit, an error amplifier, a PMOS power transistor, resistors for setting output voltage, current limit, and temperature limit protection circuits. The NCP502 has been designed to be used with low cost ceramic capacitors. The device is housed in the micro-miniature SC70-5 and TSOP-5 surface mount packages. Standard voltage versions are 1.5 V, 1.8 V, 2.5 V, 2.7 V, 2.8 V, 2.9 V, 3.0 V, 3.1 V, 3.3 V, 3.4 V, 3.5 V, 3.6 V, 3.7 V and 5.0 V. Other voltages are available in 100 mV steps. #### **Features** - Low Quiescent Current of 40 µA Typical - Excellent Line and Load Regulation - Low Output Voltage Option - Output Voltage Accuracy of 2.0% - Industrial Temperature Range of -40° C to 85° C, NCV502, $T_A = -40^{\circ}$ C to 125° C - NCP502: 1.3 V Enable Threshold High, 0.3 V Enable Threshold Low - NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These are Pb-Free Devices #### **Typical Applications** - Cellular Phones - Battery Powered Consumer Products - Hand-Held Instruments - · Camcorders and Cameras This device contains 86 active transistors Figure 1. Typical Application Diagram 1 ### ON Semiconductor® http://onsemi.com #### MARKING DIAGRAM SC70-5 SQ SUFFIX CASE 419A TSOP-5 (SOT23-5, SC59-5) SN SUFFIX CASE 483 xx = Specific Device Code A = Assembly Location / = Year W = Work Week M = Date CodePb-Free Package (Note: Microdot may be in either location) #### **PIN CONNECTIONS** #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. #### **PIN FUNCTION DESCRIPTION** | Pin No. | Pin Name | Description | | | |---------|------------------|--|--|--| | 1 | V _{in} | Positive power supply input voltage. | | | | 2 | GND | Power supply ground. | | | | 3 | Enable | This input is used to place the device into low-power standby. When this input is pulled low, the device is disabled. If this function is not used, Enable should be connected to Vin. | | | | 4 | N/C | No internal connection. | | | | 5 | V _{out} | Regulated output voltage. | | | #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|------------------|------------------------------|------| | Input Voltage | V _{in} | 12 | V | | Enable Voltage | Enable | -0.3 to V _{in} +0.3 | V | | Output Voltage | V _{out} | -0.3 to V _{in} +0.3 | V | | Power Dissipation and Thermal Characteristics
Power Dissipation | P _D | Internally Limited | W | | Operating Junction Temperature | TJ | +150 | °C | | Operating Ambient Temperature NCP50 NCV50 | ~ | -40 to +85
-40 to +125 | °C | | Storage Temperature | T _{stg} | -55 to +150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ### THERMAL CHARACTERISTICS | Rating | Symbol | Test Conditions | Value | Unit | |---|-----------------|--|-------|-----------| | Thermal Characteristics, TSOP-5 (Note 2) Thermal Resistance, Junction-to-Air (Note 3) | $R_{\theta JA}$ | 1 oz Copper Thickness, 100 mm ² | 205 | °C/W | | Thermal Resistance, Junction-to-Ambient, SC70-5 | $R_{ hetaJA}$ | | 400 | W
°C/W | NOTE: Single component mounted on a 80 x 80 x 15 mm FR4 PCB with stated copper head spreading area. Using the following boundary conditions as stated in EIA/JESD 51-1, 2, 3, 7, 12. - 2. True no connect. Printed circuit board traces are allowable.3. This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL-STD-883, Method 3015. Machine Model Method 200 V.. ^{1.} Latchup capability (85°C) ±100 mA DC with trigger voltage. ### **ELECTRICAL CHARACTERISTICS** $(V_{in} = V_{out(nom.)} + 2.0 \text{ V}, V_{enable} = V_{in}, C_{in} = 1.0 \text{ } \mu\text{F}, C_{out} = 1.0 \text{ } \mu\text{F}, T_J = 25^{\circ}\text{C}, unless otherwise noted.})$ | 1.5 V | Characteristic | Symbol | Min | Тур | Max | Unit | |--|---|-----------------------|-------|------|--------|--------| | 1.8 V 2.5 V 2.5 V 2.66 | Output Voltage (T _A = 25°C, I _{out} = 10 mA) V _{in} = V _{out} (nom.) +1.0 V | V _{out} | | | | V | | 2.5 \ | | | 1.455 | | 1.545 | | | 2.7 V 2.8 V 2.8 V 2.9 V 3.0 V 3.1 V 3.0 V 3.1 V 3.3 V 3.1 V 3.3 V 3.4 V 3.3 S 3.5 V 3.5 V 3.6 V 3.7 V 5.0 V Coutput Voltage (Γ _A = T _{low} to T _{high} , I _{out} = 10 mA) V _{in} = V _{out} (nom.) 1.5 V 1.8 V 2.7 V 2.7 V 2.7 V 2.7 V 2.7 V 2.8 V 2.9 C 3.6 S 3.7 S 3.6 V 3.7 S 3.5 S 3.6 S 3.6 S 3.7 S 3.7 V 5.0 V Coutput Voltage (Γ _A = T _{low} to T _{high} , I _{out} = 10 mA) V _{in} = V _{out} (nom.) Vout 2.5 V 2.6 V 2.7 V 2.6 S 2.8 V 2.9 V 2.8 S 3. | | | | | 1.854 | | | 2.8 V 2.9 V 3.0 V 3.1 V 3.0 S 3.1 V 3.0 S 3.1 V 3.0 S 3.1 V 3.0 S 3.2 S 3.3 S 3.3 S 3.4 S 3.3 S 3.5 S 3.6 V 3.7 V 3.6 S 3.6 S 3.6 V 3.7 V 3.6 S 3.6 S 3.6 S 3.6 S 3.6 S 3.7 S 3.6 V 3.7 V 3.6 S 3.6 S 3.6 S 3.6 S 3.7 S 3.7 V 3.6 S | | | | | | | | 2.9 V | | | | | | | | 3.0 V 3.0 V 3.0 S 3.0 S 3.0 S 3.1 S 3.162 S 3.3 V 3.3 S 3.1 S 3.162 S 3.3 V 3.3 S 3.3 S 3.3 S 3.3 S 3.4 S 3.5 S 3.5 V V 3.5 S 3.5 V 3 | | | | | | | | 3.1 V 3.038 3.1 3.162 3.33 V 3.34 3.3 3.362 3.4 3.48 3.3 3.35 V 3.34 3.4 3.43 3.5 3.57 3.6 V 3.43 3.5 3.5 V 3.43 3.5 3.57 3.6 V 3.6 V 3.6 V 3.6 E | | | | | | | | 3.3 V 3.234 3.3 3.366 3.4 3.4 3.5 3.57 3.5 V 3.528 3.6 3.672 3.7 V 5.0 V 4.900 5.0 5.100 Vout 1.5 V 1.455 1.5 1.545 1.5 1.545 2.425 2.5 2.575 2.7 V 2.425 2.5 2.575 2.8 V 2.425 2.5 2.575 2.8 V 2.9 V 3.0 V 3.3007 3.1 3.193 3.3 V 3.201 3.3 3.399 3.4 V 3.298 3.4 3.502 3.5 V 3.6 V 3.43 3.5 3.57 3.5 V 3.6 3. | | | | | | | | 3.4 V 3.5 V 3.43 3.5 3.5 3.57 3.57 3.57 3.626 3.7 3.774 5.0 V | | | | | | | | 3.5 V 3.6 V 3.5 3.5 3.5 3.5 3.6 3.6 | | | | | | | | 3.528 3.6 3.672 3.774 5.0 V 3.626 3.7 3.774 4.900 5.0 5.100 | | | | | | | | 3.626 3.7 3.774 5.0 V 5.0 V 5.0 5.100 | | | | | | | | 5.0 V 4.900 5.0 5.100 | | | | | | | | Output Voltage (T _A = T _{low} to T _{high} , I _{out} = 10 mA) V _{in} = V _{out} (nom.) V _{out} 1.455 1.5 1.545 1.5 1.545 1.5 1.545 1.5 1.545 1.8 1.854 2.8426 2.5 2.255 2.275 2.275 2.275 2.276 2.8 2.8426 2.5 2.2761 2.8 2.884 2.984 2.910 3.0 3.09 3.09 3.00 3.09 3.09 3.1 3.193 3.39 3.4 3.502 3.399 3.4 3.502 3.57 3.57 3.57 3.50 3.43 3.5 3.57 3.57 3.528 3.6 3.626 3.7 3.774 5.0 V 4.900 5.0 5.100 Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) Regline — 0.4 3.0 mV/r 5.0 V 3.626 3.7 3.774 4.900 5.0 5.100 Line Regulation (I _{out} = 1.0 mA to 80 mA) Regline — 0.4 3.0 mV/r Colve Current (V _{out} et (V _{out} at l _{out} | | | | | | | | 1.5 V 1.8 V 2.5 V 2.6 P 2.7 V 2.6 P 2.7 V 2.8 V 2.9 V 3.0 V 3.1 V 3.0 V 3.1 V 3.3 V 3.2 V 3.5 V 3.5 V 3.6 V 3.5 V 3.6 V 3.5 V 3.6 V 3.7 4.900 5.0 V 5.100 Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) Reg _{line} - 0.4 3.0 mV/r 5.0 V 4.900 5.0 V 5.1 V Load Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.4 3.0 mV/r Output Current (V _{out} = (V _{out} at I _{out} = 80 mA) -3%) I _{o(nom.)} 80 180 - mA Dropout Voltage (T _A = T _{low} to T _{high} , I _{out} = 80 mA, Measured at V _{out} V _{in} -V _{out} - 1500 1900 1.5 V-2.9 V 3.0 V 4.1 V-2.9 V 3.0 V 4.1 V-5.0 V 4.1 V-5.0 V 4.1 V 4.2 V 4.3 V 4.4 V 4.4 V 4.5 V 4.5 V 4.7 4. | | ., | 4.900 | 5.0 | 5.100 | ., | | 1.8 V 2.5 V 2.5 V 2.7 V 2.619 2.7 C 2.716 2.8 C 2.8 V 2.9 V 3.0 V 3.1 V 3.007 3.1 S 3.3 V 3.3 V 3.201 3.3 S 3.3 V 3.298 3.4 V 3.298 3.4 V 3.502 3.5 V 3.6 V 3.5 V 3.6 E 3.7 V 3.6 V 5.0 V Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) Load Regulation (I _{out} = 1.0 mA to 80 mA) Dropout Voltage (T _A = T _{low} to T _{high} , I _{out} = 80 mA, Measured at V _{out} -3.0%) 1.5 V -1.7 V 1.5 V -2.9 V 3.0 V 2.9 V 4.1 V -5.0 V 1.0 Quiescent Current (Vout (Cnable Input = 0 V) P. Quiescent Current (Court et I _O 0 V 1.0 Quies Current (Court et I _O 0 V 1.0 Quies Curr | | V _{out} | 1 455 | 1.5 | 1 5/15 | V | | 2.5 V 2.7 V 2.619 2.7 2.55 2.575 2.7 V 2.619 2.7 V 2.781 2.8 V 2.619 2.7 2.781 2.8 V 2.9 V 2.813 2.9 2.987 3.0 V 2.910 3.0 3.09 3.1 V 3.007 3.1 3.193 3.3 V 3.201 3.3 3.399 3.4 V 3.298 3.4 3.502 3.5 V 3.5 V 3.5 V 3.5 28 3.6 3.672 3.7 V 5.0 V 3.60 V 3.00 5.0 5.100 | | | | | | | | 2.7 V 2.8 V 2.9 V 3.0 V 2.910 3.0 0 3.1 V 3.3 V 3.2 V 3.2 V 3.4 V 3.2 S 3.5 V 3.6 V 3.6 V 3.7 V 3.6 V 3.7 V 3.6 V 3.7 V 5.0 V Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) Regline - 0.4 3.0 mV/r Cutput Current (V _{out} = (V _{out} at I _{out} = 80 mA) -3%) Dropout Voltage (T _A = T _{low} to T _{high} , I _{out} = 80 mA, Measured at V _{out} -3.0%) 1.5 V -1.7 V 1.8 V -2.4 V 2.7 V -2.9 V 3.0 V -2.0 V 1.0 | | | | | | | | 2.8 V 2.9 V 2.813 2.9 2.987 3.0 V 3.1 V 3.007 3.1 3.193 3.399 3.4 V 3.298 3.4 3.502 3.5 V 3.6 V 3.528 3.6 3.672 3.7 V 3.626 3.7 3.774 5.0 V 4.900 5.0 5.100 Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) Reg _{line} - 0.4 3.0 mV/r 0.000 0.0 0.0 0.0 0.0 0.0 0.0 Line Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.4 3.0 mV/r 0.0 0 | | | | | | | | 2.9 V 3.0 V 2.910 3.0 3.09 3.10 3.10 3.09 3.11 3.193 3.307 3.11 3.193 3.307 3.11 3.193 3.201 3.3 3.399 3.4 V 3.298 3.4 3.502 3.5 V 3.43 3.5 3.57 3.6 V 3.626 3.7 3.774 5.0 V 4.900 5.0 5.100 | | | | | | | | 3.0 V 3.1 V 3.0 | | | | | | | | 3.1 V 3.3 V 3.201 3.3 3.399 3.298 3.4 3.502 3.57 3.6 V 3.6 V 3.528 3.6 3.672 3.7 V 5.0 V 4.900 5.0 5.100 | | | | | | | | 3.3 V 3.4 V 3.5 S | | | | | | | | 3.4 V 3.5 V 3.43 3.5 3.57 3.57 3.6 V 3.6 2 3.43 3.5 3.57 3.528 3.6 3.672 3.7 V 3.626 3.7 3.774 4.900 5.0 5.100 Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) Reg _{line} - 0.4 3.0 mV/r 1.0 MA to 80 mA) Reg _{load} - 0.2 0.8 mV/r 1.0 MA to 80 mA) Reg _{load} - 0.2 0.8 mV/r 1.0 MA to 80 mA) Reg _{load} - 0.2 0.8 mV/r 1.0 MA to 80 mA) I _{o(nom.)} 80 180 - mA 180 - mA 180 180 - mA 180 180 - mA 180 | | | | | | | | 3.5 V 3.6 V 3.5 X 3.5 3.57 3.6 V 3.6 V 3.7 V 5.0 V 3.626 3.7 3.774 5.0 V 4.900 5.0 5.100 Eine Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) Reg _{line} - 0.4 3.0 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{line} - 0.2 0.8 mV/r 0.0 Eine Eine Eine Eine Eine Eine Eine Eine | | | | | | | | 3.528 3.6 3.672 3.7 3.774 5.0 | | | | | | | | S.0 V S.0 S.100 S.0 S.100 Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) Reg _{line} - 0.4 3.0 mV/r | | | | | | | | Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) Regline - 0.4 3.0 mV/r Load Regulation (I _{out} = 1.0 mA to 80 mA) Regload - 0.2 0.8 mV/r Output Current (V _{out} = (V _{out} at I _{out} = 80 mA) -3%) I _{o(nom.)} 80 180 - mA Dropout Voltage (T _A = T _{low} to T _{high} , I _{out} = 80 mA, Measured at V _{out} -3.0%) - 1500 1900 1900 180 1900 < | 3.7 V | | 3.626 | 3.7 | 3.774 | | | Load Regulation (I _{out} = 1.0 mA to 80 mA) Reg _{load} - 0.2 0.8 mV/r | 5.0 V | | 4.900 | 5.0 | 5.100 | | | Output Current (Vout = (Vout at Iout = 80 mA) -3%) Io(nom.) 80 180 - mA Dropout Voltage (TA = Tlow to Thigh, Iout = 80 mA, Measured at Vout -3.0%) Vin-Vout - 1500 1900 1.5 V-1.7 V - 1300 1700 1200 1.8 V-2.4 V - 1300 1700 1400 2.5 V-2.6 V - 1000 1400 | Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) | Reg _{line} | - | 0.4 | 3.0 | mV/V | | Dropout Voltage (T _A = T _{low} to T _{high} , I _{out} = 80 mA, Measured at V _{out} -3.0%) Vin-V _{out} mN 1.5 V-1.7 V - 1500 1900 1.8 V-2.4 V - 1300 1700 2.5 V-2.6 V - 1000 1400 2.7 V-2.9 V - 850 1300 3.0 V-4.0 V - 850 1200 4.1 V-5.0 V - 600 900 NCV502 - 5.0 V - 700 1100 Quiescent Current (Enable Input = 0 V) IQ - 0.1 1.0 | | Reg _{load} | Ì | 0.2 | 0.8 | mV/mA | | -3.0%) 1.5 V-1.7 V - 1500 1900 1.8 V-2.4 V - 1300 1700 2.5 V-2.6 V - 1000 1400 2.7 V-2.9 V - 850 1300 3.0 V-4.0 V - 850 1200 4.1 V-5.0 V - 600 900 NCV502 - 5.0 V - 700 1100 Quiescent Current (Enable Input = 0 V) - 0.1 1.0 | | I _{o(nom.)} | 80 | 180 | - | mA | | 1.5 V - 1.7 V | | V_{in} - V_{out} | | | | mV | | 1.8 V-2.4 V - 1300 1700 2.5 V-2.6 V - 1000 1400 2.7 V-2.9 V - 850 1300 3.0 V-4.0 V - 850 1200 4.1 V-5.0 V - 600 900 NCV502 - 5.0 V - 700 1100 Quiescent Current
(Enable Input = 0 V) IQ μΑ | , | | | 4500 | 4000 | | | 2.5 V-2.6 V - 1000 1400 2.7 V-2.9 V - 850 1300 3.0 V-4.0 V - 850 1200 4.1 V-5.0 V - 600 900 NCV502 - 5.0 V - 700 1100 Quiescent Current
(Enable Input = 0 V) IQ μA | | | _ | | | | | 2.7 V-2.9 V - 850 1300 3.0 V-4.0 V - 850 1200 4.1 V-5.0 V - 600 900 NCV502 - 5.0 V - 700 1100 Quiescent Current
(Enable Input = 0 V) IQ μA | | | _ | | | | | 3.0 V-4.0 V | | | _ | | | | | 4.1 V-5.0 V
NCV502 - 5.0 V - 600
- 900
1100 Quiescent Current
(Enable Input = 0 V) IQ
- μΑ | | | _ | | | | | NCV502 – 5.0 V – 700 1100 Quiescent Current (Enable Input = 0 V) IQ μΑ | | | _ | | | | | (Enable Input = 0 V) - 0.1 1.0 | | | _ | | | | | (Enable Input = 0 V) - 0.1 1.0 | Quiescent Current | lo | | | | цА | | | | ·Q | _ | 0.1 | 1.0 | po t | | | | | _ | | | | | | , , | I _{out(max)} | 90 | 200 | 500 | mA | | \ \ \ \ | | , , | - | 55 | - | dB | | | | V _n | - | 180 | - | μVrms | | | · · · · · · · · · · · · · · · · · · · | | | | | · V | | (Voltage Increasing, Output Turns On, Logic High) | | (5, | 1.3 | _ | _ | | | (Voltage Decreasing, Output Turns Off, Logic Low) – 0.3 | (Voltage Decreasing, Output Turns Off, Logic Low) | | - | - | 0.3 | | | Output Voltage Temperature Coefficient T _C - 100 - ppm/ | Output Voltage Temperature Coefficient | T _C | - | 100 | - | ppm/°C | ^{4.} Maximum package power dissipation limits must be observed. $$PD = \frac{T_{J(max)} - T_{A}}{R_{\theta JA}}$$ 5. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 45 $V_{IN} = 5.0 \text{ V}$ IQ, QUIESCENT CURRENT (MA) V_{OUT} = 3.0 V 42.5 40 37.5 35 32.5 30 -20 20 60 100 -60 -40 0 40 80 T, TEMPERATURE (°C) Figure 2. Quiescent Current versus Input Voltage Figure 3. Quiescent Current versus Temperature 70 Figure 4. Line Transient Response Figure 5. Enable Response Figure 6. Load Transient Response Figure 7. Ripple Rejection/Frequency Figure 8. Output Voltage versus Temperature Figure 9. Output Voltage versus Input Voltage Figure 10. Dropout Voltage versus Temperature #### **DEFINITIONS** #### **Load Regulation** The change in output voltage for a change in output current at a constant temperature. #### **Dropout Voltage** The input/output differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 3.0% below its nominal. The junction temperature, load current, and minimum input supply requirements affect the dropout level. #### **Maximum Power Dissipation** The maximum total dissipation for which the regulator will operate within its specifications. #### **Quiescent Current** The quiescent current is the current which flows through the ground when the LDO operates without a load on its output: internal IC operation, bias, etc. When the LDO becomes loaded, this term is called the Ground current. It is actually the difference between the input current (measured through the LDO input pin) and the output current. #### Line Regulation The change in output voltage for a change in input voltage. The measurement is made under conditions of low dissipation or by using pulse technique such that the average chip temperature is not significantly affected. #### **Line Transient Response** Typical over and undershoot response when input voltage is excited with a given slope. #### **Thermal Protection** Internal thermal shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated at typically 160°C, the regulator turns off. This feature is provided to prevent failures from accidental overheating. ### **Maximum Package Power Dissipation** The maximum power package dissipation is the power dissipation level at which the junction temperature reaches its maximum operating value, i.e. 125°C. Depending on the ambient power dissipation and thus the maximum available output current. #### **APPLICATIONS INFORMATION** A typical application circuit for the NCP502 series is shown in Figure 1, front page. ### Input Decoupling (C1) A 1.0 μF capacitor either ceramic or tantalum is recommended and should be connected close to the NCP502 package. Higher values and lower ESR will improve the overall line transient response. If large line or load transients are not expected, then it is possible to operate the regulator without the use of a capacitor. TDK capacitor: C2012X5R1C105K, or C1608X5R1A105K #### **Output Decoupling (C2)** The NCP502 is a stable regulator and does not require any specific Equivalent Series Resistance (ESR) or a minimum output current. Capacitors exhibiting ESRs ranging from a few $m\Omega$ up to $5.0~\Omega$ can thus safely be used. The minimum decoupling value is $1.0~\mu F$ and can be augmented to fulfill stringent load transient requirements. The regulator accepts ceramic chip capacitors as well as tantalum devices. Larger values improve noise rejection and load regulation transient response. TDK capacitor: C2012X5R1C105K, C1608X5R1A105K, or C3216X7R1C105K ### **Enable Operation** The enable pin will turn on the regulator when pulled high and turn off the regulator when pulled low. These limits of threshold are covered in the electrical specification section of this data sheet. If the enable is not used then the pin should be connected to $V_{\rm in}$. #### Hints Please be sure the Vin and GND lines are sufficiently wide. When the impedance of these lines is high, there is a chance to pick up noise or cause the regulator to malfunction Set external components, especially the output capacitor, as close as possible to the circuit, and make leads as short as possible. #### **Thermal** As power across the NCP502 increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material and also the ambient temperature effect the rate of temperature rise for the part. This is stating that when the NCP502 has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power dissipation applications. The maximum dissipation the package can handle is given by: $$PD = \frac{T_{J(max)} - T_{A}}{R_{\theta JA}}$$ If junction temperature is not allowed above the maximum 125°C, then the NCP502 can dissipate up to 250 mW @ 25°C. The power dissipated by the NCP502 can be calculated from the following equation: $$P_{tot} = [V_{in} * I_{gnd} (I_{out})] + [V_{in} - V_{out}] * I_{out}$$ or $$V_{inMAX} = \frac{P_{tot} + V_{out} * I_{out}}{I_{gnd} + I_{out}}$$ If an 80 mA output current is needed then the ground current from the data sheet is 40 μ A. For an NCP502 (3.0 V), the maximum input voltage will then be 6.12 V. #### **ORDERING INFORMATION** | Device | Nominal
Output Voltage | Marking | Package | Shipping [†] | | |----------------|---------------------------|---------|---------------------|-----------------------|--| | NCP502SQ15T2G | 1.5 | LCC | | | | | NCP502SQ18T1G | 1.8 | LCD | | | | | NCP502SQ18T2G | | | | | | | NCP502SQ25T2G | 2.5 | LCE | | | | | NCP502SQ27T2G | 2.7 | LCF | | | | | NCP502SQ28T2G | 2.8 | LCG | | | | | NCP502SQ29T2G | 2.9 | LJI | | | | | NCP502SQ30T2G | 3.0 | LCH | SC70-5
(Pb-Free) | 3000 / Tape & Reel | | | NCP502SQ31T2G | 3.1 | LJJ | (i b-i lee) | | | | NCP502SQ33T2G | 3.3 | LCI | | | | | NCP502SQ34T2G | 3.4 | LJK | | | | | NCP502SQ35T2G | 3.5 | LGO | | | | | NCP502SQ36T2G | 3.6 | LIU | | | | | NCP502SQ37T2G | 3.7 | LJQ | | | | | NCP502SQ50T2G | 5.0 | LCJ | | | | | NCP502SN28T1G | 2.8 | LKD | | | | | NCP502SN29T1G | 2.9 | LJN | | | | | NCP502SN30T1G | 3.0 | LKE | | 3000 / Tape & Reel | | | NCP502SN31T1G | 3.1 | LJO | | | | | NCP502SN33T1G | 3.3 | LKF | | | | | NCP502SN34T1G | 3.4 | LJK | TSOP-5
(Pb-Free) | | | | NCP502SN35T1G | 3.5 | LJ6 | (1.5-1.109) | | | | NCP502SN36T1G | 3.6 | AC4 | | | | | NCP502SN37T1G | 3.7 | LKC | | | | | NCP502SN50T1G | 5.0 | LKG | | | | | NCV502SN50T1G* | 5.0 | LKG | | | | Additional voltages in 100 mV steps are available upon request by contacting your ON Semiconductor representative. [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. ### **PACKAGE DIMENSIONS** #### SC-88A (SC-70-5/SOT-353) **SQ SUFFIX** CASE 419A-02 ISSUE L - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | INCHES | | MILLIMETERS | | |-----|------------|-------|-------------|------| | DIM | MIN MAX | | MIN | MAX | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | В | 0.045 | 0.053 | 1.15 | 1.35 | | С | 0.031 | 0.043 | 0.80 | 1.10 | | D | 0.004 | 0.012 | 0.10 | 0.30 | | G | 0.026 BSC | | 0.65 BSC | | | Н | | 0.004 | | 0.10 | | J | 0.004 | 0.010 | 0.10 | 0.25 | | K | 0.004 | 0.012 | 0.10 | 0.30 | | N | 0.008 REF | | 0.20 | REF | | S | 0.079 0.08 | | 2.00 | 2.20 | ### **SOLDER FOOTPRINT** #### PACKAGE DIMENSIONS #### TSOP-5 SN SUFFIX CASE 483-02 ISSUE K #### NOTES - DIMENSIONING AND TOLERANCING PER ASME Y14 5M 1994 - Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. - MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. - MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. - 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY. | | MILLIMETERS | | | | |-----|-------------|----------|--|--| | DIM | MIN | MAX | | | | Α | 3.00 | BSC | | | | В | 1.50 | 1.50 BSC | | | | С | 0.90 | 1.10 | | | | D | 0.25 | 0.50 | | | | G | 0.95 BSC | | | | | Н | 0.01 | 0.10 | | | | J | 0.10 | 0.26 | | | | Κ | 0.20 | 0.60 | | | | M | 0 ° | 10° | | | | S | 2 50 | 3 00 | | | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/ Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative